1500字范文,内容丰富有趣,写作好帮手!
1500字范文 > 矩阵论(五)——矩阵分析

矩阵论(五)——矩阵分析

时间:2022-12-08 09:39:40

相关推荐

矩阵论(五)——矩阵分析

矩阵论(五)——矩阵分析

1. 向量范数2. 矩阵范数3. 向量序列与矩阵序列的极限3.1 向量序列的极限3.2 矩阵序列的极限 4. 矩阵幂级数

1. 向量范数

向量范数:∀ x ∈ V \forall x \in V ∀x∈V,若非负实数 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣满足

   (1) 正定性: ∣ ∣ x ∣ ∣ ≥ 0 , 且 ∣ ∣ x ∣ ∣ = 0 ⟺ x = 0 ||x|| \ge 0,且 ||x|| = 0 \iff x = 0 ∣∣x∣∣≥0,且∣∣x∣∣=0⟺x=0

   (2) 齐次性: ∣ ∣ a x ∣ ∣ = ∣ a ∣ ∣ ∣ x ∣ ∣ , a ∈ F ||ax|| = |a|\ ||x||,a \in F ∣∣ax∣∣=∣a∣∣∣x∣∣,a∈F

   (3) 三角不等式: ∀ x , y ∈ V , 都 有 ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ \forall x,y \in V,都有|| x + y|| \leq ||x|| + ||y|| ∀x,y∈V,都有∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣

则称||x||为向量x的范数, [ V ; ∣ ∣ . ∣ ∣ ] [V;||.||] [V;∣∣.∣∣]为赋范空间

1-范数:∣ ∣ x ∣ ∣ 1 = Σ i ∣ x i ∣ ||x||_1 = \Sigma_i |x_i| ∣∣x∣∣1​=Σi​∣xi​∣

2-范数(向量长度,由内积所诱导的范数):∣ ∣ x ∣ ∣ 2 = ( x , x ) = x H x = Σ i ∣ x i ∣ 2 ||x||_2 = \sqrt{(x,x)} = \sqrt{x^H x} = \sqrt{\Sigma_i|x_i|^2} ∣∣x∣∣2​=(x,x) ​=xHx ​=Σi​∣xi​∣2 ​

∞ \infty ∞-范数:∣ ∣ x ∣ ∣ ∞ = m a x ∣ x i ∣ ||x||_\infty = max|x_i| ∣∣x∣∣∞​=max∣xi​∣

p-范数:∀ p ∈ ( 1 , + ∞ ) , ∣ ∣ x ∣ ∣ p = Σ i ∣ x i ∣ p p , ∀ x ∈ C n \forall p \in (1,\ +\infty),||x||_p = \sqrt[p]{\Sigma_i |x_i|^p},\forall x \in C^n ∀p∈(1,+∞),∣∣x∣∣p​=pΣi​∣xi​∣p ​,∀x∈Cn

例如:

若 x = ( 1 , i , 1 + i ) T x = (1,\ i,\ 1 + i)^T x=(1,i,1+i)T,有

∣ ∣ x ∣ ∣ 1 = 1 + ∣ i ∣ + ∣ 1 + i ∣ = 1 + 1 + 2 = 2 + 2 ||x||_1 = 1 + |i| + |1 + i| = 1 + 1 + \sqrt{2} = 2 + \sqrt{2} ∣∣x∣∣1​=1+∣i∣+∣1+i∣=1+1+2 ​=2+2 ​

∣ ∣ x ∣ ∣ 2 = 1 2 + ∣ i ∣ 2 + ∣ 1 + i ∣ 2 = 1 + 1 + 2 2 = 2 ||x||_2 = \sqrt{1^2 + |i|^2 + |1 + i|^2} = \sqrt{1 + 1 + \sqrt{2}^2} = 2 ∣∣x∣∣2​=12+∣i∣2+∣1+i∣2 ​=1+1+2 ​2 ​=2

∣ ∣ x ∣ ∣ ∞ = m a x { 1 , 1 , 2 } = 2 ||x||_\infty = max\{1,\ 1,\ \sqrt{2}\} = \sqrt{2} ∣∣x∣∣∞​=max{1,1,2 ​}=2 ​

向量范数的连续性:α 1 , ⋯ , α n 为 C n \alpha_1,\ \cdots,\ \alpha_n为C^n α1​,⋯,αn​为Cn的任一组基, ∣ ∣ . ∣ ∣ 为 C n ||.||为C^n ∣∣.∣∣为Cn上任一向量范数, ∀ x ∈ C n , 有 x = Σ i x i α i , x i ∈ C n , 则 f ( x 1 , ⋯ , x n ) = ∣ ∣ x ∣ ∣ 为 x 1 , ⋯ , x n \forall x \in C^n,有x= \Sigma_i \ x_i \ \alpha_i,x_i \in C^n,则f(x_1,\ \cdots,\ x_n) = ||x||为x_1,\ \cdots,\ x_n ∀x∈Cn,有x=Σi​xi​αi​,xi​∈Cn,则f(x1​,⋯,xn​)=∣∣x∣∣为x1​,⋯,xn​的连续函数

向量范数的等价性:∣ ∣ x ∣ ∣ ( 1 ) 与 ∣ ∣ x ∣ ∣ ( 2 ) ||x||^{(1)}与||x||^{(2)} ∣∣x∣∣(1)与∣∣x∣∣(2)是线性空间V上定义的两种向量范数,

若 ∃ c 1 , c 2 > 0 , 使 c 1 ∣ ∣ x ∣ ∣ ( 2 ) ≤ ∣ ∣ x ∣ ∣ ( 1 ) ≤ c 2 ∣ ∣ x ∣ ∣ ( 2 ) , ∀ x ∈ V \exists c_1, c_2 > 0,使c_1 ||x||^{(2)} \leq ||x||^{(1)} \leq c_2 ||x||^{(2)},\forall x \in V ∃c1​,c2​>0,使c1​∣∣x∣∣(2)≤∣∣x∣∣(1)≤c2​∣∣x∣∣(2),∀x∈V,则称这两个范数等价

有限维线性空间的任意两种向量范数都是等价的

在无限维线性空间中,两个向量范数是可以不等价的

2. 矩阵范数

矩阵范数:∀ A ∈ F n × n \forall A \in F^{n \times n} ∀A∈Fn×n,对应一个非负实数||A||满足

  (1) 正定性: ∣ ∣ A ∣ ∣ ≥ 0 , 且 ∣ ∣ A ∣ ∣ = 0 ⟺ A = 0 ||A|| \ge 0,且||A|| = 0 \iff A = 0 ∣∣A∣∣≥0,且∣∣A∣∣=0⟺A=0

  (2) 齐次性: ∣ ∣ a A ∣ ∣ = ∣ a ∣ ∣ ∣ A ∣ ∣ , a ∈ F ||aA|| = |a|\ ||A||,a \in F ∣∣aA∣∣=∣a∣∣∣A∣∣,a∈F

  (3) 三角不等式: ∀ A , B ∈ F n × n , 都 有 ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ \forall A,B \in F^{n \times n},都有||A + B|| \leq ||A|| + ||B|| ∀A,B∈Fn×n,都有∣∣A+B∣∣≤∣∣A∣∣+∣∣B∣∣

  (4) 相容性: ∀ A , B ∈ F n × n , 都 有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ∣ ∣ B ∣ ∣ \forall A,B \in F^{n \times n},都有||AB|| \leq ||A|| \ ||B|| ∀A,B∈Fn×n,都有∣∣AB∣∣≤∣∣A∣∣∣∣B∣∣

则称||A||为矩阵A的范数

F(Frobenius)-范数:∣ ∣ A ∣ ∣ F = Σ i Σ j ∣ a i j ∣ 2 ) = t r ( A H A ) = Σ i σ i 2 ||A||_F = \sqrt{\Sigma_{i} \Sigma_{j} |a_{ij}|^2)} = \sqrt{tr(A^HA)} = \sqrt{\Sigma_i \sigma_i^2} ∣∣A∣∣F​=Σi​Σj​∣aij​∣2) ​=tr(AHA) ​=Σi​σi2​ ​

例如:

A = ( a i j ) ∈ C n × n , ∣ ∣ A ∣ ∣ F = Σ i Σ j ∣ a i j ∣ 2 A = (a_{ij}) \in C^{n \times n},||A||_F = \sqrt{\Sigma_i \Sigma_j |a_{ij}|^2} A=(aij​)∈Cn×n,∣∣A∣∣F​=Σi​Σj​∣aij​∣2 ​,则

( 1 ) ∣ ∣ A ∣ ∣ F = ∣ ∣ A H ∣ ∣ F (1) \quad ||A||_F = ||A^H||_F (1)∣∣A∣∣F​=∣∣AH∣∣F​

( 2 ) ∣ ∣ U A ∣ ∣ F = ∣ ∣ A V ∣ ∣ F = ∣ ∣ U A V ∣ ∣ F = ∣ ∣ A ∣ ∣ F (2) \quad ||UA||_F = ||AV||_F = ||UAV||_F = ||A||_F (2)∣∣UA∣∣F​=∣∣AV∣∣F​=∣∣UAV∣∣F​=∣∣A∣∣F​,其中U,V是酉矩阵

( 3 ) t r ( A H A ) = Σ i Σ j ∣ a i j ∣ 2 (3) \quad tr(A^H A) = \Sigma_i \Sigma_j |a_{ij}|^2 (3)tr(AHA)=Σi​Σj​∣aij​∣2

例如:

A = ( 0 3 i 1 0 − 1 0 − 1 1 2 ) , A H A = ( 1 − 1 2 − 1 11 2 − 3 i − 2 2 + 3 i 5 ) A = \begin{pmatrix} 0 & 3i & 1 \\ 0 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix},A^HA = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 11 & 2-3i \\ -2 & 2 + 3i & 5 \end{pmatrix} A=⎝⎛​00−1​3i−11​102​⎠⎞​,AHA=⎝⎛​1−1−2​−1112+3i​22−3i5​⎠⎞​

∣ ∣ A ∣ ∣ F = 9 + 1 + 1 + 1 + 1 + 4 = t r ( A H A ) = 1 + 11 + 5 = 17 ||A||_F = \sqrt{9 + 1 + 1 + 1 + 1 + 4} = \sqrt{tr(A^HA)} = \sqrt{1 + 11 + 5} = \sqrt{17} ∣∣A∣∣F​=9+1+1+1+1+4 ​=tr(AHA) ​=1+11+5 ​=17 ​

相容范数:∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ . ∣ ∣ x ∣ ∣ ||Ax|| \leq ||A|| .||x|| ∣∣Ax∣∣≤∣∣A∣∣.∣∣x∣∣,其中||x||是向量范数,||A||是矩阵范数

诱导范数:∣ ∣ A ∣ ∣ = m a x { ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ } ||A|| = max\{\frac{||Ax||}{||x||}\} ∣∣A∣∣=max{∣∣x∣∣∣∣Ax∣∣​},其中||x||是向量范数且 x ≠ 0 x \neq 0 x​=0,称||A||为由向量范数||x||所诱导的诱导范数

矩阵p-范数:由 ∣ ∣ x ∣ ∣ p ||x||_p ∣∣x∣∣p​所诱导的矩阵范数。常用的p-范数为 ∣ ∣ A ∣ ∣ 1 , ∣ ∣ A ∣ ∣ 2 与 ∣ ∣ A ∣ ∣ ∞ ||A||_1,||A||_2与||A||_\infty ∣∣A∣∣1​,∣∣A∣∣2​与∣∣A∣∣∞​

列和范数:∣ ∣ A ∣ ∣ 1 = m a x ( Σ i = 1 n ∣ a i j ∣ ) ||A||_1 = max(\Sigma_{i = 1}^n |a_{ij}|) ∣∣A∣∣1​=max(Σi=1n​∣aij​∣),np.max(np.sum(abs(arr), axis=1, keepdims=True), axis=0)

行和范数:∣ ∣ A ∣ ∣ ∞ = m a x ( Σ j = 1 n ∣ a i j ∣ ) ||A||_\infty = max(\Sigma_{j = 1}^n |a_{ij}|) ∣∣A∣∣∞​=max(Σj=1n​∣aij​∣),np.max(np.sum(abs(arr), axis=0, keepdims=True), axis=1)

谱范数:∣ ∣ A ∣ ∣ 2 = λ 1 , λ 1 是 A H A ||A||_2 = \sqrt{\lambda_1},\lambda_1是A^HA ∣∣A∣∣2​=λ1​ ​,λ1​是AHA的最大特征值

例如:

3. 向量序列与矩阵序列的极限

3.1 向量序列的极限

x ( k ) = ( x 1 ( k ) ⋯ x n ( k ) ) T , k = 1 , 2 , ⋯ 是 C n x^{(k)} = (x_1^{(k)} \quad \cdots \quad x_n^{(k)})^T,k = 1,2,\cdots是C^n x(k)=(x1(k)​⋯xn(k)​)T,k=1,2,⋯是Cn空间的一个向量序列,如果当 k → + ∞ k \rightarrow +\infty k→+∞时,它的n个分量数列都收敛,即 lim ⁡ k → ∞ x i ( k ) = a i , i = 1 , 2 , ⋯ , n \lim_{k \to \infty} x_i^{(k)} = a_i,i = 1,2,\cdots,n limk→∞​xi(k)​=ai​,i=1,2,⋯,n,则称向量序列 { x ( k ) } \{x^{(k)}\} {x(k)}是按分量收敛的。向量 α = ( α 1 ⋯ α n ) T \alpha = (\alpha_1 \quad \cdots \quad \alpha_n)^T α=(α1​⋯αn​)T是它的极限,记为 l i m k → ∞ x ( k ) = α 或 x ( k ) → α lim_{k \rightarrow \infty} x^{(k)} = \alpha或 x^{(k)} \rightarrow \alpha limk→∞​x(k)=α或x(k)→α

当至少有一个分量数列是发散的,则称向量序列是发散的。

例如

x ( k ) ∈ C n , α ∈ C n , 则 lim ⁡ k → ∞ x ( k ) = α ⟺ lim ⁡ k → ∞ ∣ ∣ x ( k ) − α ∣ ∣ = 0 x^{(k)} \in C^n,\alpha \in C^n,则\lim_{k \rightarrow \infty}x^{(k)} = \alpha \iff \lim_{k \rightarrow \infty} ||x^{(k)} - \alpha|| = 0 x(k)∈Cn,α∈Cn,则limk→∞​x(k)=α⟺limk→∞​∣∣x(k)−α∣∣=0,其中 ∣ ∣ . ∣ ∣ 为 C n ||.||为C^n ∣∣.∣∣为Cn中任一范数

3.2 矩阵序列的极限

矩阵序列 { A ( k ) } , A ( k ) = ( a i j ( k ) ) ∈ C n × n , 若 lim ⁡ k → ∞ a i j ( k ) = a i j , i , j = 1 , ⋯ , n \{A^{(k)}\},A^{(k)} = (a_{ij}^{(k)}) \in C^{n \times n},若\lim_{k \rightarrow \infty} a_{ij}^{(k)} = a_{ij},i,j = 1,\cdots,n {A(k)},A(k)=(aij(k)​)∈Cn×n,若limk→∞​aij(k)​=aij​,i,j=1,⋯,n,

则称矩阵序列 { A ( k ) } \{A^{(k)}\} {A(k)}收敛, A = ( a i j ( k ) ) 称 为 { A ( k ) } A = (a_{ij}^{(k)})称为\{A^{(k)}\} A=(aij(k)​)称为{A(k)}的极限,记为 lim ⁡ k → ∞ A ( k ) = A 或 A ( k ) = A , k → ∞ \lim_{k \rightarrow \infty}A^{(k)} = A或A^{(k)} = A,k \rightarrow \infty limk→∞​A(k)=A或A(k)=A,k→∞

例如:

A ( k ) = ( ( ( 1 + 1 k ) k 1 + 1 k − 1 ( − 1 ) k k ) ⟶ A = ( e 1 − 1 0 ) A^{(k)} = \begin{pmatrix} ((1 + \frac{1}{k}) ^ k & 1 + \frac{1}{k} \\ \\ -1 & \frac{(-1)^k}{k} \end{pmatrix} \longrightarrow A = \begin{pmatrix} e & 1 \\ \\ -1 & 0 \end{pmatrix} A(k)=⎝⎛​((1+k1​)k−1​1+k1​k(−1)k​​⎠⎞​⟶A=⎝⎛​e−1​10​⎠⎞​

{ A ( k ) } ∈ C n × n , ∣ ∣ A ∣ ∣ ∈ C n × n , 则 l i m k → ∞ A ( k ) = ∣ ∣ A ∣ ∣ ⟺ l i m k → ∞ ∣ ∣ A ( k ) − A ∣ ∣ = 0 \{A^{(k)}\} \in C^{n \times n},||A|| \in C^{n \times n},则lim_{k \rightarrow \infty} A^{(k)} = ||A|| \iff lim_{k \rightarrow \infty} ||A^{(k)} - A|| = 0 {A(k)}∈Cn×n,∣∣A∣∣∈Cn×n,则limk→∞​A(k)=∣∣A∣∣⟺limk→∞​∣∣A(k)−A∣∣=0,其中 ∣ ∣ . ∣ ∣ 为 C n ||.||为C^n ∣∣.∣∣为Cn中任一范数

4. 矩阵幂级数

谱半径:ρ ( A ) = m a x ( ∣ λ i ∣ ) , λ i ∈ { λ 1 , λ 2 , ⋯ , λ n } , { λ 1 , λ 2 , ⋯ , λ n } 矩 阵 A ∈ C n × n \rho(A) = max(|\lambda_i|),\lambda_i \in \{\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_n\},\{\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_n\}矩阵A \in C^{n \times n} ρ(A)=max(∣λi​∣),λi​∈{λ1​,λ2​,⋯,λn​},{λ1​,λ2​,⋯,λn​}矩阵A∈Cn×n的全部特征值

ρ ( A k ) = ( ρ ( A ) ) k \rho(A^k) = (\rho(A))^k ρ(Ak)=(ρ(A))k

A k → 0 ( k → ∞ ) ⟺ ρ ( A ) < 1 A^k \rightarrow 0(k \rightarrow \infty) \iff \rho(A) < 1 Ak→0(k→∞)⟺ρ(A)<1

A ∈ C n × n , ∀ 矩 阵 范 数 ∣ ∣ A ∣ ∣ ∈ C n × n , 都 有 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ A \in C^{n \times n},\forall 矩阵范数||A|| \in C^{n \times n},都有\rho(A) \leq ||A|| A∈Cn×n,∀矩阵范数∣∣A∣∣∈Cn×n,都有ρ(A)≤∣∣A∣∣。即A的谱半径是A的任意一种矩阵范数的下界

A ∈ C n × n , ∀ ϵ > 0 A \in C^{n \times n},\forall \epsilon > 0 A∈Cn×n,∀ϵ>0,存在某种矩阵范数 ∣ ∣ A ∣ ∣ ∗ , 使 ∣ ∣ A ∣ ∣ ∗ ≤ ρ ( A ) + ϵ ||A||_*,使||A||_* \leq \rho(A) + \epsilon ∣∣A∣∣∗​,使∣∣A∣∣∗​≤ρ(A)+ϵ。即A的谱半径是A的所有矩阵范数的下确界

证明:

矩阵幂级数:Σ k = 0 ∞ a k A k = a 0 I + a 1 A + ⋯ + a k A k + ⋯ , 其 中 A ∈ C n × n , a k ∈ C \Sigma_{k = 0}^{\infty} a_k A^k = a_0 I + a_1 A + \cdots + a_k A^k + \cdots,其中A \in C^{n \times n},a_k \in C Σk=0∞​ak​Ak=a0​I+a1​A+⋯+ak​Ak+⋯,其中A∈Cn×n,ak​∈C

矩阵幂级数的部分和:S n ( A ) = Σ k = 0 n a k A k S_n(A) = \Sigma^n_{k = 0} a_k A^k Sn​(A)=Σk=0n​ak​Ak

若 { S n ( A ) } \{S_n(A)\} {Sn​(A)}收敛,则称 Σ k = 0 ∞ a k A k \Sigma^\infty_{k = 0}a_kA^k Σk=0∞​ak​Ak收敛,否则发散

若 lim ⁡ n → ∞ S n ( A ) = S \lim_{n \rightarrow \infty} S_n(A) = S limn→∞​Sn​(A)=S,则称S为 Σ k = 0 ∞ a k A k \Sigma_{k = 0}^\infty a_kA^k Σk=0∞​ak​Ak的和矩阵

收敛性判别:若复变量z的幂级数 Σ k = 0 ∞ a k z k \Sigma_{k = 0}^{\infty}a_k z^k Σk=0∞​ak​zk的收敛半径为R, R = lim ⁡ n → ∞ a n a n + 1 R = \lim_{n \to \infty} \frac{a_n}{a_{n + 1}} R=limn→∞​an+1​an​​,而方阵 A ∈ C n × n A \in C^{n \times n} A∈Cn×n的谱半径为 ρ ( A ) \rho(A) ρ(A),则

  (1) ρ ( A ) < R , 则 Σ k = 0 ∞ a k A k \rho(A) < R,则\Sigma_{k = 0}^\infty a_k A^k ρ(A)<R,则Σk=0∞​ak​Ak收敛

  (2) ρ ( A ) > R , 则 Σ k = 0 ∞ a k A k \rho(A) > R,则\Sigma_{k = 0}^\infty a_k A^k ρ(A)>R,则Σk=0∞​ak​Ak发散

  (3) ρ ( A ) = R , 则 Σ k = 0 ∞ a k A k \rho(A) = R,则\Sigma_{k = 0}^\infty a_k A^k ρ(A)=R,则Σk=0∞​ak​Ak收敛性不定

例如:

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。