1500字范文,内容丰富有趣,写作好帮手!
1500字范文 > 分类算法之K-近邻算法

分类算法之K-近邻算法

时间:2022-12-23 20:16:41

相关推荐

分类算法之K-近邻算法

问题:回忆分类问题的判定方法

什么是K-近邻算法

你的“邻居”来推断出你的类别

1、K-近邻算法(KNN)

1.1 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

1.2 距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离

同时还有曼哈顿距离和闵可夫斯基距离

2、电影类型分析

假设我们有现在几部电影

其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想

2.1 问题

如果取的最近的电影数量不一样?会是什么结果?

2.2 K-近邻算法数据的特征工程处理

结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理

3、K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

4、案例:预测签到位置

数据介绍:将根据用户的位置,准确性和时间戳预测用户正在查看的业务。

train.csv,test.csv row_id:登记事件的IDxy:坐标准确性:定位准确性 时间:时间戳place_id:业务的ID,这是您预测的目标

官网:/navoshta/grid-knn/data

4.1 分析

对于数据做一些基本处理(这里所做的一些处理不一定达到很好的效果,我们只是简单尝试,有些特征我们可以根据一些特征选择的方式去做处理)

1、缩小数据集范围 DataFrame.query()

4、删除没用的日期数据 DataFrame.drop(可以选择保留)

5、将签到位置少于n个用户的删除

place_count = data.groupby(‘place_id’).count()

tf = place_count[place_count.row_id > 3].reset_index()

data = data[data[‘place_id’].isin(tf.place_id)]

分割数据集

标准化处理

k-近邻预测

4.2 代码

def knncls():"""K近邻算法预测入住位置类别:return:"""# 一、处理数据以及特征工程# 1、读取收,缩小数据的范围data = pd.read_csv("./data/FBlocation/train.csv")# 数据逻辑筛选操作 df.query()data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")# 删除time这一列特征data = data.drop(['time'], axis=1)print(data)# 删除入住次数少于三次位置place_count = data.groupby('place_id').count()tf = place_count[place_count.row_id > 3].reset_index()data = data[data['place_id'].isin(tf.place_id)]# 3、取出特征值和目标值y = data['place_id']# y = data[['place_id']]x = data.drop(['place_id', 'row_id'], axis=1)# 4、数据分割与特征工程?# (1)、数据分割x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)# (2)、标准化std = StandardScaler()# 队训练集进行标准化操作x_train = std.fit_transform(x_train)print(x_train)# 进行测试集的标准化操作x_test = std.fit_transform(x_test)# 二、算法的输入训练预测# K值:算法传入参数不定的值 理论上:k = 根号(样本数)# K值:后面会使用参数调优方法,去轮流试出最好的参数[1,3,5,10,20,100,200]knn = KNeighborsClassifier(n_neighbors=1)# 调用fit()knn.fit(x_train, y_train)# 预测测试数据集,得出准确率y_predict = knn.predict(x_test)print("预测测试集类别:", y_predict)print("准确率为:", knn.score(x_test, y_test))return None

4.3 结果分析

准确率: 分类算法的评估之一

1、k值取多大?有什么影响?

k值取很小:容易受到异常点的影响

k值取很大:受到样本均衡的问题

2、性能问题?

距离计算上面,时间复杂度高

5、K-近邻总结

优点:

简单,易于理解,易于实现,无需训练

缺点:

懒惰算法,对测试样本分类时的计算量大,内存开销大

必须指定K值,K值选择不当则分类精度不能保证

使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试

6.模型选择与调优

1、为什么需要交叉验证

交叉验证目的:为了让被评估的模型更加准确可信

2、什么是交叉验证(cross validation)

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。

2.1 分析

我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理

训练集:训练集+验证集测试集:测试集

问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?

3、超参数搜索-网格搜索(Grid Search)

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

3.1 模型选择与调优

sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)

对估计器的指定参数值进行详尽搜索

estimator:估计器对象

param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}

cv:指定几折交叉验证

fit:输入训练数据

score:准确率

结果分析:

bestscore:在交叉验证中验证的最好结果_bestestimator:最好的参数模型cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

4、Facebook签到位置预测K值调优

使用网格搜索估计器

使用网格搜索和交叉验证找到合适的参数

knn = KNeighborsClassifier()param = {"n_neighbors": [3, 5, 10]}gc = GridSearchCV(knn, param_grid=param, cv=2)gc.fit(x_train, y_train)print("选择了某个模型测试集当中预测的准确率为:", gc.score(x_test, y_test))# 训练验证集的结果print("在交叉验证当中验证的最好结果:", gc.best_score_)print("gc选择了的模型K值是:", gc.best_estimator_)print("每次交叉验证的结果为:", gc.cv_results_)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。