1500字范文,内容丰富有趣,写作好帮手!
1500字范文 > 毕业设计之 - 题目:基于深度学习的手势识别实现

毕业设计之 - 题目:基于深度学习的手势识别实现

时间:2020-10-12 19:46:57

相关推荐

毕业设计之 - 题目:基于深度学习的手势识别实现

文章目录

1 前言2 项目背景3 任务描述4 环境搭配5 项目实现5.1 准备数据5.2 构建网络5.3 开始训练5.4 模型评估6 识别效果7 最后

1 前言

Hi,大家好,这里是丹成学长,今天向大家介绍

基于深度学习的手势识别实现

2 项目背景

手势识别在深度学习项目是算是比较简单的。这里为了给大家会更好的训练。其中的数据集如下:

3 任务描述

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。手势识别属于图像分类中的一个细分类问题。虽然与NLP的内容其实没有多大的关系,但是作为深度学习,DNN是一个最为简单的深度学习的算法,它是学习后序CNN、RNN、Lstm以及其他算法深度学习算法的基础。

实践环境:Python3.7,PaddlePaddle1.7.0。

用的仍然是前面多次提到的jupyter notebook,当然我们也可以用本地的pycharm。不过这里需要提醒大家,如果用的是jupyter notebook作为试验训练,在实验中会占用很大的内存,jupyter notebook默认路径在c盘,时间久了,我们的c盘会内存爆满,希望我们将其默认路径修改为其他的路径,网上有很多的修改方式,这里限于篇幅就不做说明了。这里需要给大家简要说明:paddlepaddle是百度 AI Studio的一个开源框架,类似于我们以前接触到的tensorflow、keras、caffe、pytorch等深度学习的框架。

4 环境搭配

首先在百度搜索paddle,选择你对应的系统(Windows、macOs、Ubuntu、Centos),然后选择你的安装方式(pip、conda、docker、源码编译),最后选择python的版本(Python2、python3),但是一般选择python3。

左后先则版本(GPU、CPU),但是后期我们用到大量的数据集,因此,我们需要下载GPU版本。,然后将该命令复制到cmd终端,点击安装,这里用到了百度的镜像,可以加快下载安装的速度。

python -m pip install paddlepaddle-gpu==1.8.3.post107 -i /pypi/simple

学长电脑是window10系统,用的是pip安装方式,安装的版本是python3,本人的CUDA版本是CUDA10,因此选择的示意图以及安装命令如图所示。这里前提是我们把GPU安装需要的环境配好,网上有很多相关的文章,这里篇幅有限,就不进行展开叙述了。

环境配好了,接下来就该项目实现。

5 项目实现

5.1 准备数据

首先我们导入必要的第三方库。

import osimport timeimport randomimport numpy as npfrom PIL import Imageimport matplotlib.pyplot as pltimport paddleimport paddle.fluid as fluidimport paddle.fluid.layers as layersfrom multiprocessing import cpu_countfrom paddle.fluid.dygraph import Pool2D,Conv2Dfrom paddle.fluid.dygraph import Linear

该数据集是学长自己收集标注的数据集(目前较小):包含0-9共就种数字手势,共2073张手势图片。

图片一共有3100100张,格式均为RGB格式文件。在本次实验中,我们选择其中的10%作为测试集,90%作为训练集。通过遍历图片,根据文件夹名称,生成label。

我按照1:9比例划分测试集和训练集,生成train_list 和 test_list,具体实现如下:

data_path = '/home/aistudio/data/data23668/Dataset' # 这里填写自己的数据集的路径,windows的默认路径是\,要将其路径改为/。character_folders = os.listdir(data_path)print(character_folders)if (os.path.exists('./train_data.list')):os.remove('./train_data.list')if (os.path.exists('./test_data.list')):os.remove('./test_data.list')for character_folder in character_folders:with open('./train_data.list', 'a') as f_train:with open('./test_data.list', 'a') as f_test:if character_folder == '.DS_Store':continuecharacter_imgs = os.listdir(os.path.join(data_path, character_folder))count = 0for img in character_imgs:if img == '.DS_Store':continueif count % 10 == 0:f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')else:f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')count += 1print('列表已生成')

其效果图如图所示:

这里需要简单的处理图片。需要说明一些函数:

data_mapper(): 读取图片,对图片进行归一化处理,返回图片和 标签。data_reader(): 按照train_list和test_list批量化读取图片。train_reader(): 用于训练的数据提供器,乱序、按批次提供数据test_reader():用于测试的数据提供器

具体的实现如下:

def data_mapper(sample):img, label = sampleimg = Image.open(img)img = img.resize((32, 32), Image.ANTIALIAS)img = np.array(img).astype('float32')img = img.transpose((2, 0, 1))img = img / 255.0return img, labeldef data_reader(data_list_path):def reader():with open(data_list_path, 'r') as f:lines = f.readlines()for line in lines:img, label = line.split('\t')yield img, int(label)return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)

5.2 构建网络

在深度学习中有一个关键的环节就是参数的配置,这些参数设置的恰当程度直接影响这我们的模型训练的效果。

因此,也有特别的一个岗位就叫调参岗,专门用来调参的,这里是通过自己积累的经验来调参数,没有一定的理论支撑,因此,这一块是最耗时间的,当然也是深度学习的瓶颈。

接下来进行参数的设置。

train_parameters = {"epoch": 1,#训练轮数"batch_size": 16, #批次大小"lr":0.002,#学习率"skip_steps":10,#每10个批次输出一次结果"save_steps": 30, #每10个批次保存一次结果"checkpoints":"data/"}train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256),batch_size=32)test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)

前面也提到深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础。DNN网络图如图所示:

首先定义一个神经网络,具体如下

class MyLeNet(fluid.dygraph.Layer):def __init__(self):super(MyLeNet, self).__init__()self.c1 = Conv2D(3, 6, 5, 1)self.s2 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)self.c3 = Conv2D(6, 16, 5, 1)self.s4 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)self.c5 = Conv2D(16, 120, 5, 1)self.f6 = Linear(120, 84, act='relu')self.f7 = Linear(84, 10, act='softmax')def forward(self, input):# print(input.shape) x = self.c1(input)# print(x.shape)x = self.s2(x)# print(x.shape)x = self.c3(x)# print(x.shape)x = self.s4(x)# print(x.shape)x = self.c5(x)# print(x.shape)x = fluid.layers.reshape(x, shape=[-1, 120])# print(x.shape)x = self.f6(x)y = self.f7(x)return y

这里需要说明的是,在forward方法中,我们在每一步都给出了打印的print()函数,就是为了方便大家如果不理解其中的步骤,可以在实验中进行打印,通过结果来帮助我们进一步理解DNN的每一步网络构成。

5.3 开始训练

接下来就是训练网络。

为了方便我观察实验中训练的结果,学长引入了matplotlib第三方库,直观的通过图来观察我们的训练结果,具体训练网络代码实现如下:

import matplotlib.pyplot as pltIter=0Iters=[]all_train_loss=[]all_train_accs=[]def draw_train_process(iters,train_loss,train_accs):title='training loss/training accs'plt.title(title,fontsize=24)plt.xlabel('iter',fontsize=14)plt.ylabel('loss/acc',fontsize=14)plt.plot(iters,train_loss,color='red',label='training loss')plt.plot(iters,train_accs,color='green',label='training accs')plt.legend()plt.grid()plt.show()with fluid.dygraph.guard():model = MyLeNet() # 模型实例化model.train() # 训练模式opt = fluid.optimizer.SGDOptimizer(learning_rate=0.01,parameter_list=model.parameters()) # 优化器选用SGD随机梯度下降,学习率为0.001.epochs_num = 250 # 迭代次数for pass_num in range(epochs_num):for batch_id, data in enumerate(train_reader()):images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]# print(images.shape)image = fluid.dygraph.to_variable(images)label = fluid.dygraph.to_variable(labels)predict = model(image) # 预测# print(predict)loss = fluid.layers.cross_entropy(predict, label)avg_loss = fluid.layers.mean(loss) # 获取loss值acc = fluid.layers.accuracy(predict, label) # 计算精度Iter += 32Iters.append(Iter)all_train_loss.append(loss.numpy()[0])all_train_accs.append(acc.numpy()[0])if batch_id != 0 and batch_id % 50 == 0:print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num, batch_id, avg_loss.numpy(),acc.numpy()))avg_loss.backward()opt.minimize(avg_loss)model.clear_gradients()fluid.save_dygraph(model.state_dict(), 'MyLeNet') # 保存模型draw_train_process(Iters, all_train_loss, all_train_accs)

训练过程以及结果如下:

前面提到强烈建议大家安装gpu版的paddle框架,因为就是在训练过程中,paddle框架会利用英伟达的GP加速,训练的速度会很快的,而CPU则特别的慢。因此,CPU的paddle框架只是在学习的时候还可以,一旦进行训练,根本不行。

可能GPU需要几秒的训练在CPU可能需要十几分钟甚至高达半个小时。其实不只是paddlepaddle框架建议大家安装GPU版本,其他的类似tensorflow、keras、caffe等框架也是建议大家按安装GPU版本。不过安装起来比较麻烦,还需要大家认真安装。

with fluid.dygraph.guard():accs = []model_dict, _ = fluid.load_dygraph('MyLeNet')model = MyLeNet()model.load_dict(model_dict) # 加载模型参数model.eval() # 训练模式for batch_id, data in enumerate(test_reader()): # 测试集images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]image = fluid.dygraph.to_variable(images)label = fluid.dygraph.to_variable(labels)predict = model(image)acc = fluid.layers.accuracy(predict, label)accs.append(acc.numpy()[0])avg_acc = np.mean(accs)print(avg_acc)

5.4 模型评估

配置好了网络,并且进行了一定的训练,接下来就是对我们训练的模型进行评估,具体实现如下:

结果还可以,这里说明的是,刚开始我们的模型训练评估不可能这么好,可能存在过拟合或者欠拟合的问题,不过更常见的是过拟合,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将DNN换为更为合适的CNN神经网络模型,效果就会好很多,关于CNN的相关知识以及实验,我们下篇文章在为大家介绍。最后就是我们的模型的预测。

6 识别效果

7 最后

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。